Dietary restriction-resistant human tumors harboring the PIK3CA-activating mutation H1047R are sensitive to metformin

نویسندگان

  • Sílvia Cufí
  • Bruna Corominas-Faja
  • Eugeni Lopez-Bonet
  • Rosa Bonavia
  • Sonia Pernas
  • Isabel álvarez López
  • Joan Dorca
  • Susana Martínez
  • Norberto Batista López
  • Severina Domínguez Fernández
  • Elisabet Cuyàs
  • Joana Visa
  • Esther Rodríguez-Gallego
  • Rosa Quirantes-Piné
  • Antonio Segura-Carretero
  • Jorge Joven
  • Begoña Martin-Castillo
  • Javier A. Menendez
چکیده

Cancer cells expressing constitutively active phosphatidylinositol-3 kinase (PI3K) are proliferative regardless of the absence of insulin, and they form dietary restriction (DR)-resistant tumors in vivo. Because the binding of insulin to its receptors activates the PI3K/AKT/mammalian target of rapamycin (mTOR) signaling cascade, activating mutations in the PIK3CA oncogene may determine tumor response to DR-like pharmacological strategies targeting the insulin and mTOR pathways. The anti-diabetic drug metformin is a stereotypical DR mimetic that exerts its anti-cancer activity through a dual mechanism involving insulin-related (systemic) and mTOR-related (cell-autonomous) effects. However, it remains unclear whether PIK3CA-activating mutations might preclude the anti-cancer activity of metformin in vivo. To model the oncogenic PIK3CA-driven early stages of cancer, we used the clonal breast cancer cell line MCF10DCIS.com, which harbors the gain-of-function H1047R hot-spot mutation in the catalytic domain of the PI3KCA gene and has been shown to form DR-refractory xenotumors. To model PIK3CA-activating mutations in late stages of cancer, we took advantage of the isogenic conversion of a PIK3CA-wild-type tumor into a PIK3CA H1047R-mutated tumor using the highly metastatic colorectal cancer cell line SW48. MCF10DCIS.com xenotumors, although only modestly affected by treatment with oral metformin (approximately 40% tumor growth inhibition), were highly sensitive to the intraperitoneal (i.p.) administration of metformin, the anti-cancer activity of which increased in a time-dependent manner and reached >80% tumor growth inhibition by the end of the treatment. Metformin treatment via the i.p. route significantly reduced the proliferation factor mitotic activity index (MAI) and decreased tumor cellularity in MCF10DCIS.com cancer tissues. Whereas SW48-wild-type (PIK3CA+/+) cells rapidly formed metformin-refractory xenotumors in mice, ad libitum access to water containing metformin significantly reduced the growth of SW48-mutated (PIK3CAH1047R/+) xenotumors by approximately 50%. Thus, metformin can no longer be considered as a bona fide DR mimetic, at least in terms of anti-cancer activity, because tumors harboring the insulin-unresponsive, DR-resistant, PIK3CA-activating mutation H1047R remain sensitive to the anti-tumoral effects of the drug. Given the high prevalence of PIK3CA mutations in human carcinomas and the emerging role of PIK3CA mutation status in the treatment selection process, these findings might have a significant impact on the design of future trials evaluating the potential of combining metformin with targeted therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common and distinct features of mammary tumors driven by Pten-deletion or activating Pik3ca mutation

PTEN loss and PIK3CA activation both promote the accumulation of phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3). While these proteins also have distinct biochemical functions, beyond the regulation of PIP3, little is known about the consequences of these differences in vivo. Here, we directly compared cancer signalling in mammary tumors from MMTV-Cre:Ptenf/f and MMTV-Cre:Pik3ca(LSL-H1047R)...

متن کامل

Luminal expression of PIK3CA mutant H1047R in the mammary gland induces heterogeneous tumors.

The phosphoinositide 3-kinase (PI3K) signaling cascade, a key mediator of cellular survival, growth, and metabolism, is frequently altered in human cancer. Activating mutations in PIK3CA, which encodes the α-catalytic subunit of PI3K, occur in approximately 30% of breast cancers. These mutations result in constitutive activity of the enzyme and are oncogenic, but it is not known whether they ar...

متن کامل

Physiological Levels of Pik3caH1047R Mutation in the Mouse Mammary Gland Results in Ductal Hyperplasia and Formation of ERα-Positive Tumors

PIK3CA, the gene coding for the p110α subunit of phosphoinositide 3-kinase, is frequently mutated in a variety of human tumors including breast cancers. To better understand the role of mutant PIK3CA in the initiation and/or progression of breast cancer, we have generated mice with a conditional knock-in of the common activating mutation, Pik3ca(H1047R), into one allele of the endogenous gene i...

متن کامل

Inhibitors of STAT3, β‐catenin, and IGF‐1R sensitize mouse PIK3CA‐mutant breast cancer to PI3K inhibitors

Although mutations in the phosphoinositide 3-kinase catalytic subunit (PIK3CA) are common in breast cancer, PI3K inhibitors alone have shown modest efficacy. We sought to identify additional pathways altered in PIK3CA-mutant tumors that might be targeted in combination with PI3K inhibitors. We generated two transgenic mouse models expressing the human PIK3CA-H1047R- and the -E545K hotspot-mutan...

متن کامل

Conditional loss of ErbB3 delays mammary gland hyperplasia induced by mutant PIK3CA without affecting mammary tumor latency, gene expression, or signaling.

Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K), have been shown to transform mammary epithelial cells (MEC). Studies suggest this transforming activity requires binding of mutant p110α via p85 to phosphorylated YXXM motifs in activated receptor tyrosine kinases (RTK) or adaptors. Using transgenic mice, we examined if ErbB3, a potent activa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013